

Setup: Unobserved Common Confounding

Outcome $Y \in \mathcal{Y} \subseteq \mathbb{R}$, treatment $A \in \mathcal{A} \subseteq \mathbb{R}d_A$, instruments A proxies $W \in \mathcal{W} \subseteq \mathbb{R}d_W$, unobserved common confounders U All results hold conditional on covariates. Notation: $\Sigma_{XY} \coloneqq \mathbb{E}[XY^{\intercal}] - \mathbb{E}[X] \mathbb{E}[Y]^{\intercal}, \Sigma_X = \Sigma_{XX}, \hat{W}_Z \coloneqq \mathbb{E}_{L}[W|Z] = Z\Sigma_Z^{-1}\Sigma_{ZW}.$

Assumption 1 (IV Common Confounding Model). 1. SUTVA: Y = Y(A, Z).

2. Instruments

(a) Exclusion: $Y(a, z) = Y(a) \perp Z \mid U$. (b) Index sufficiency: For some $\tau \in L_2(Z)$, where $T \coloneqq \tau(Z)$, $U \perp Z \mid T$. (c) Relevance (completeness): For any $g(A,T) \in L_2(A,T)$, $\mathbb{E}[g(A,T)|Z] = 0$ only when g(A,T) = 0.

3. Proxies

(a) Exclusion: $W \perp Z \mid U$.

(b) Relevance (completeness): For any $g(U) \in L_2(U)$,

 $\mathbb{E}[g(U)|W] = 0$ only when g(U) = 0.

Linear Model Example

Equation	Exclusion	Relevance	
$Y = A\beta + W\upsilon_Y + U\gamma_Y + \varepsilon_Y,$	$\mathbb{E}\left[\varepsilon_{Y}Z\right]=0,$	(3)	
$A = Z\zeta + W\upsilon_A + U\gamma_W + \varepsilon_A,$		$\operatorname{rank}\left(\mathbb{E}\left[A^{T}Z \hat{W}_{Z}\right]\right) = d_{A}, \textbf{(4)}$	
$Z = U\gamma_Z + \varepsilon_Z,$		$rank(\gamma_Z) = d_U < d_Z$, (5)	
$W = U\gamma_W + \varepsilon_W,$	$\mathbb{E}\left[\varepsilon_W^{T}\varepsilon_Z\right] = 0,$	$\operatorname{rank}(\gamma_W) = d_U \leq d_W.$ (6)	

Idea: Identify a Valid Control from Observables

Quantity of interest: <i>Causal effect</i> of A on Y .	$J = \int I$
A is endogenous (simultaneity, unobserved confounders).	Y(a
We want to use relevant instruments Z for A .	A(
Instruments NOT unconditionally excluded.	Y(a
The unobserved common confounders U fully explain the association between Z and W .	$Z \perp$
Instruments would be excluded conditional on	Y(a)

istration in the excluded conditional of the common confounders U.

Lemma 1. Assume $W \perp Z \mid U$ (A1.3a), and for any $g(U) \in L_2(U)$, $\mathbb{E}[g(U)|W] = 0$ only when g(U) = 0 (A1.3b). Take any $\tau \in L_2(Z)$, where $T \coloneqq \tau(Z)$, such that $W \perp Z \mid T$. Then, also $U \perp Z \mid T$. In words: If W and Z are independent conditional on $\tau(Z)$ (part of Z's variation), then so are U and Z conditional on $\tau(Z)$. Exclusion is restored. Identification ensues in with outcome model separability [Imbens and Newey, 2009] or first stage monotonicity [Newey and Powell, 2003]. Index sufficiency with fixed effects [Liu et al., 2021] similar in spirit.

Relaxing Instrument Exclusion with Common Confounders CHRISTIAN TIEN (UNIVERSITY OF CAMBRIDGE)

$Z \in$	$\in \mathcal{Z}$	$\subset \mathbb{F}$	$\mathbb{R}d$	7,	
	$\mathcal{U}\subseteq$				

....

(1)

(2)

- $Y(a)\pi(a)\mathrm{d}a$ $(a) \not\!\perp A$
- $A(z) \neq A$
- $I(a) \not\!\perp Z$
- $\perp W \mid U$

 $Y(a) \perp \!\!\!\perp Z \mid U$

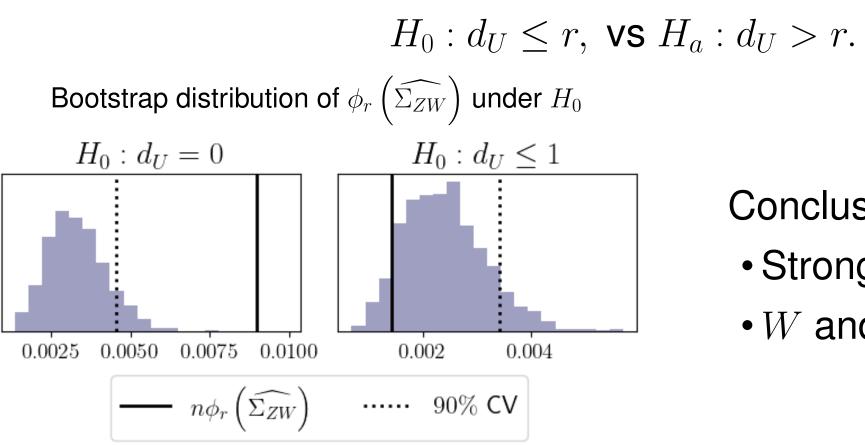
Motivation/Application: Returns to Education

Data:	National Longitudinal Survey of Youth 1997		
$A \mid \mathbf{E}$	Household net worth at 35: continuous vari BA degree: 1 if individual i obtained a BA d		
	Pre-college test results: subject GPA, ASVA Risky behaviour dummies: drinking, smokir		
	Ability: Unmeasured intellectual capacity		
-	Disturbance: Heterogeneous characteristic Covariates: sex, college GPA, family variab		
Utility-maximiser chooses education with knowle			
	$A = \underset{a \in \{0,1\}}{\operatorname{argmax}} \left(\mathbb{E} \left[u(Y(a)) - c(a) A \right] \right)$		
Droblo	m. Solf coloction and unobserved confour		

Problem: Self-selection and unobserved confounding from ability ensue.

Test relevance of W and Z for U

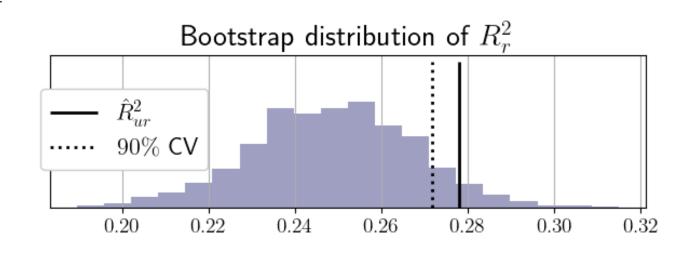
For $r < \min\{d_Z, d_W\}$, use sum of r squared singular values $\phi_r(\Sigma_{ZW})$ to test



Test relevance of Z for A given T

Simple prediction test:

 $H_0: R^2_{ur} = R^2_r, \; {
m vs}\; R^2_{ur} > R^2_r,$ $A = Z\tilde{\zeta} + X\tilde{\eta}_{A,ur} + \tilde{\varepsilon}_{A,ur} \implies R_{ur}^2$ $A = T\tilde{\gamma}_A + X\tilde{\eta}_{A,r} + \tilde{\varepsilon}_{A,r} \implies R_r^2$



Exclusion of Z conditional on U

- Understand U through T to argue for/against exclusion (A1.2a).
- Here, T appears to hold a measure of general ability constant.
- Z probably excluded conditional on general ability and covariates.

Results

- Positive ability bias in OLS indicated by PL [Cui et al., 2020]
- Even larger negative selection bias in OLS indicated by IV
- ICC corrects for ability and selection bias
- About 50% larger SEs in ICC compared to IV

Estimates for β and linear					
	parameter on T				
(SE in parantheses)					
	OLS	PL	IV	ICC	
β	59.18	30.90	222.97	125.15	
	(9.12)	(10.40)	(34.74)	(52.93)	
T		27.76		16.05	
		(4.82)		(7.37)	

97. *n* = 1,983. riable, in USD degree, 0 o.w.AB percentile ing, etc by age 17

cs, and chance bles, region, etc

edge \mathcal{I} about ε_Y and U: $= a, \mathcal{I}|),$ (7)

(8)

Conclusion:

• Strong evidence for $d_U = 1$. • W and Z relevant for U.

Conclusion: Z is relevant for A given T.

Intuition: Orthogonalisation wrt Unobservables

Create control function T

Decompose the covariance of Z and W as $\Sigma_{ZW} = \underbrace{\gamma_Z^{\mathsf{T}} \Sigma_U \gamma_W}_{\mathbf{Z}} \qquad \coloneqq C_Z C_W^{\mathsf{T}}.$ (9) $\implies \operatorname{rank}(\Sigma_{ZW}) = d_l$ $T \coloneqq Z\Sigma_Z^{-1}C_Z, \qquad \mathbb{E}_{\mathrm{L}}[W|Z] = TC_W^{\mathsf{T}}, \qquad \Sigma_{ZT} = C_Z, \Sigma_T = C_Z^{\mathsf{T}}\Sigma_Z^{-1}C_Z.$

for some $C_Z \in \mathbb{R}^{d_Z \times d_U}$ and $C_W \in \mathbb{R}^{d_W \times d_U}$ s.t. a valid control function T is

How does T help deconfound Z?

- $\mathbb{E}_{L}[U|Z]$ is proportional to $\mathbb{E}_{L}[W|Z]$, because $\operatorname{rank}(\gamma_{W}) = d_{U}$.

founded instrument Z as

$$\tilde{Z} = Z \underbrace{\left(I_{d_{Z}} - \Sigma_{Z}^{-1}C_{Z} \left(C_{Z}^{\mathsf{T}}\Sigma_{Z}^{-1}C_{Z}\right)^{-1}C_{Z}^{\mathsf{T}}\right)}_{:=M, \text{ note that } C_{Z}^{\mathsf{T}}M=0} D_{Z}. \tag{10}$$

Consistent method of moments estimator

$$\beta = \Sigma_{\tilde{Z}A}^{-1} \Sigma_{\tilde{Z}Y} \qquad \Longrightarrow \qquad \hat{\beta}_{MoM} = \left(D_Z^{\mathsf{T}} \hat{M}^{\mathsf{T}} Z^{\mathsf{T}} A \right)^{-1} \left(D_Z^{\mathsf{T}} \hat{M}^{\mathsf{T}} Z^{\mathsf{T}} Y \right) \qquad (11)$$

Conclusion

- Using proxies to deconfound wrt common unobservables . . .
- (like selection or simultaneity).

References

Yifan Cui, Hongming Pu, Xu Shi, Wang Miao, and Eric Tchetgen Tchetgen. Semiparametric proximal causal inference. *arXiv preprint arXiv:2011.08411*, 2020.

- *arXiv:2105.12891*, 2021.
- models. *Econometrica*, 71(5):1565–1578, 2003.

ARXIV:2301.02052

• By holding $\mathbb{E}_{L}[W|Z]$ fixed via T, we are also holding $\mathbb{E}_{L}[U|Z]$ fixed. • All endogeneity in Z is from $\mathbb{E}_{L}[U|Z]$, so fixed T restores exclusion. E.g. for any $D_Z \in \mathbb{R}^{d_U \times d_A}$ s.t. rank $((I_{d_Z} - \Sigma_T^{-1} \Sigma_{TZ}) D_Z) = d_A$ get decon-

+ can restore instrument exclusion when conditioning cannot, but - consumes more variation in the instruments than conditioning on observables, thus requiring rich relevance of instruments for treatment. • Method most relevant with rich observational data, but intricate biases

Guido W Imbens and Whitney K Newey. Identification and estimation of triangular simultaneous equations models without additivity. *Econometrica*, 77(5):1481–1512, 2009. Laura Liu, Alexandre Poirier, and Ji-Liang Shiu. Identification and estimation of average partial effects in semiparametric binary response panel models. arXiv preprint

Whitney K Newey and James L Powell. Instrumental variable estimation of nonparametric

CT**493@**CAM.AC.UK